Random variability

Hwichang Jeong 2021. 07.29

Seoul National University

- There are two qualitatively different reasons why causal inference may be wrong.
 - Systemic bias
 - Random variability
- Three types of systemic bias :
 - Confounding bias (Chap7)
 - Selection bias (Chap8)
 - Measurement bias (Chap9)

- We have ignored random variability in previous nine chapters.
- We compute causal effects in study populations of near infinite size (unrealistic).

• Association

$$Pr(Y = 1|A = 0) - Pr(Y = 1|A = 1)$$

• Exchangeability

$$Pr(Y^{a} = 1 | A = 0) = Pr(Y^{a} = 1 | A = 1)$$

- When we assume exchageability, association is equal to causal effect.
- Here *Pr* is not probability but proportion.

Causal effect - non-infinite population

Table 2.1	A	Y	Y^0	Y^1
Rheia	0	0	0	?
Kronos	0	1	1	
				? ? ? 0
Demeter	0	0	0	(
Hades	0	0	0	Ŷ
Hestia	1	0	?	
Poseidon	1	0	?	0
Hera	1	0	? ?	0
Zeus	1	1	?	1
Artemis	0	1	1	?
Apollo	0	1	1	?
Leto	0	0	0	?
Ares	1	1	?	1
Athena	1	1	?	1
Hephaestus	1	1	? ? ?	1
Aphrodite	1	1		1
Cyclope	1	1	?	1
Persephone	1	1	? ? ?	1
Hermes	1	0	?	0
Hebe	1	0	?	0
Dionysus	1	0	?	0

- Treatment A : heart transplant
- Outcome Y : survive or die.
- Assign $A_i = 0$ or 1 for all individual *i* randomly.
- Not exchangeable although we do randomization.

$$Pr(Y^{a=0} = 1|A = 0) = \frac{3}{7}$$

 $Pr(Y^{a=0} = 1|A = 1) = \frac{7}{13}$

• If population size becomes infinitely large, groups become exchangeable.

- Suppose that there is a super-population so large that we can regard it as infinite.
- Our goal is to make inferences about the super-population.
- Estimand : The parameter of interest in the super-population $(e.g \ Pr(Y = 1|A = a)).$
- Estimator : A rule that produces a numerical value for the estimand from samples.(*e.g* $\hat{Pr}(Y = 1|A = a)$).
- As sample size increases, the estimates get closer to the estimand (consistency).

Example

Table 2.1				
	A	Y	Y^0	Y^1
Rheia	0	0	0	?
Kronos	0	1	1	?
Demeter	0	0	0	?
Hades	0	0	0	?
Hestia	1	0	?	0
Poseidon	1	0	?	0
Hera	1	0	?	0
Zeus	1	1	?	1
Artemis	0	1	1	?
Apollo	0	1	1	?
Leto	0	0	0	?
Ares	1	1	?	1
Athena	1	1	?	1
Hephaestus	1	1	?	1
Aphrodite	1	1	?	1
Cyclope	1	1	?	1
Persephone	1	1	?	1
Hermes	1	0	?	0
Hebe	1	0	?	0
Dionysus	1	0	?	0

- We randomly choose *n* samples drawn from super-population. (*n* = 20)
- Each individuals in super-population are assigned *A_i* randomly.
- *P̂r*(*Y* = 1|*A* = *a*) is consistent and unbiased estimator of *Pr*(*Y* = 1|*A* = *a*)
- Since super-population is large enough and A_i is assigned randomly, exchangeability holds.
- $\hat{Pr}(Y = 1|A = 1)$ is consistent and unbiased estimator of $Pr(Y^{a=1} = 1)$ and $\hat{Pr}(Y = 1|A = 0)$ is consistent and unbiased estimator of $Pr(Y^{a=0} = 1)$
- We can estimate $Pr(Y^{a=1} = 1) Pr(Y^{a=0} = 1)$ as $\hat{Pr}(Y = 1|A = 1) - \hat{Pr}(Y = 1|A = 0)$

- Suppose there is a variable *L* which is associated to treatment *A*.
- We should adjust for *L* because of the confounding.
- In statistics, the (*L*, *A*) is said to be an ancillary statistic for causal risk difference.
- Conditionality principle : Inference on a parameter should be performed conditional on ancillary statistics.

Conditionality principle

- Assume sRD = Pr(Y = 1 | L = I, A = 1) Pr(Y = 1 | L = I, A = 0) known to be constant across strata L.
- The parameter of interest is the stratum-specific causal risk difference.
- The likelihood of the data $\{Y_i, A_i, L_i\}_{i=1}^n$ is

$$\prod_{i=1}^{n} f(Y_i \mid L_i, A_i; sRD, p_0) \times f(A_i \mid L_i; \alpha) \times f(L_i; \rho)$$

Where $p_0 = (p_{01}, p_{02})$ with $p_{0l} = \Pr(Y = 1 \mid L = l, A = 0)$, α , and ρ are nuisance parameters associated with the conditional density of Y given A and L.

A and L are ancillary statistics for the parameter of interest when the f (Y_i | L_i, A_i; p₀) depends on the parameter of interest, but the joint density of L and A does not share parameters with f (Y_i | L_i, A_i; sRD, p₀).

- Suppose the investigators had measured 100 pre-treatment binary variables.
- Pre-treatment variable L is formed by combining the 100 variables.
- We say that the data is of high dimensionality when there are many possible combinations of values of the pre-treatment variables.

- There is 2¹⁰⁰ strata, a few strata contain both a treated and an untreated individual.
- Curse of dimensionality : The conditional estimator is uninformative when there are many pre-treatment variables.